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Stability of onsdfmenaional m~~etohy~d~~ic flowo in chennela of variable croaa- 
section with pertfcnlar attention given to the growth of amall perturbation wavee, was in- 
veatigatad in [l and 21. In [I] th e wave emplificatioa factor was determined under the 
aeaomption of homogeneity of the flow (ita parameters independent of x), while in [2] amp- 
lification factors for a nonhomogeneous flow were found with the help of the magnetic field 
induction equation. 

Investigation of stability ahoold include a statement of the bound&y valus problem for 
lineeriaad nonsteady equations and a determination of natural freqaenciea A. 

Below we consider a problem of stability of a qaaai-onedimenaional magnetohydrodyna- 
mic flow at small magnetic Reynold’s nnmbere with respect to short wave oscillations 
(unlike [2], we assume that electric and magnetic fields are any specified functions of x) 
Parameters of the flow which is investigated for atability, are functions of the longitndinal 
coordinate r, while parameters of the perturbed state are functions of x and t. Boundary 
conditions at the front and back end of the ma~etohydrod~~ic channel are obtained from 
the requirement of continuous transition of the mode of flow into a pure gaadynamic flow 
perturbed only by the wavea expanding from the bonndariea of the magnetohydrodynamic 
channel. (We assume that no perturbationa arrfve at these boundaries from the outside). 
Under these assumptions, we investigate three different modes of flow : supersonic, aubaon- 
ic and a flow in which sonic transition takes place within the shock wave. 

Stability of steady flows with a continuous transition through the sonic barrier is also 
investigated in the linear approximation. As we know, continuous sonic transition occurs 
at the singular points of the system of equations describing a steady flow [3]. 

Below we show that continuous transition from supersonic to subsonic flow ia stable, 
if it occurs at a node, and unstable if it occurs at a saddle point. The opposite is true in 
the case of a transition from subsonic to supersonic flow. 

1. Let us consider a flow of a nonviscous fluid without heat conduction, in a plane 
channel of variable cross-section y(z), in the presence of au external magnetic field B = (0, 
0 - B). Electrical conductivity of this fluid is (I= alp, p), upper and lower walls of the 
channel are conducting and exhibit a potential difference of 2q within 04 ~4 t, while 
outside this segment they are nonconducting. Magnetic field intensity B and electric poten- 
tial Cp are, on the segment Of x ( L, any specified functions of GV, while outside this seg- 
ment they are identically equal to zero 

0 fl<O, s>L), 0 @-CO, z>L) 
(1.1) 
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Direction of velocity vector of the flow coincides with the positive direction of the 
z-axis. 

Continuity, motion and energy equations of au unsteady onedimensional flow at smaD 
Reynold’s numbers, have the form 

where u is velocity, p is the density, p is the pressure of fluid and x is the ratio of 
specific heats. Equation of state for a perfect gas was utilised in deriving the above equa- 
tions. 

In order to investigate the stability of the flow defined by steady state equations cop 
responding to (1.2), we shall consider a lineariaed system 

~+(+,+U$+~U+R+) 

(VU’- Bm,)p+ R$ + (RU' + aBa) u + RU $Baa,p+~=O 

-(x- i)u~~~p$-(P’fxP$+2(1~--)~Bu)u+xP~+~+ 

+pjE_ (x - 1) uq + u g = 0 (1.3) 

where R (x), Vfx) and P &) are-the density, velocity and pressure respectively of the 
steady flow; p (r, t), II (I, t) and p (x, t) are perturbations of the corresponding magnitudes 
and are assumed small; ao and op are the corresponding partial derivatives of electrical 
conductivity (I and Q 9 p/y - UR. Derivatives with respect to x are denoted by a prime. 
Since the system (1.2) willnotbe used again, we shall retain its notation for perturbations. 

2. We shall seek the solution of (1.3) in the form 

p (2, Q - u1 (+@r, U (t, t) = z&g (z)&‘, P (5, Q = u, (z)e”’ (2.1) 
since the growth of functions p (z, I), . . . . when t + 00, is governed [4] by the extreme right- 
hand side eigenvalae X. 

Putting (2.1) into (1.3) we obtain a system of ordinary linear differential equations. 
Solution of this system can be found by expanding it into au asymptotic series in.8 = l/X, 
provided that 1 Xl > N where N > 0 is sufficiently large [5]. 

Let us write a general expression for this system 

Bijuj' + Wfj + Cij) uj = 0 (i, j = i, 2, 3) (2.2) 
where repeated index denotes summation. Writing ite solution in the form of a series 

Uj= (Ujo -f- eUjt -f- 8”Ujp + . ..) eXp 1 hdX 

and inserting it into (2.21, we obtain a sequence of systems of linear algebraic equations 
defining ujo, a, t etc. 

&jeh + Atj) ujo= 0 (2.3) 

Conditian 
t&j& +&j&l= - (C*jajO + &ja'j5) (2.4) 

ID@ +Afjl= 0 
is necessary for a nontrivial solution of (2.3) to exist, and it yields the values of (An)(k) 
(k = 1, 2, 3) at which the determinant of (2.3) becomes zero. A solution sj,, Ck) = u,o. fk) 
f(k)(x) corresponds to each value of 0, e)(k), and f(k) ( x is an arbitrary function which can ) 
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be found from the condition of compatibility of (2.4), with the accuracy of up to the con- 

stant multiplier 

v.(l)Bij”jl~)l(k)‘~t (C. .fA .(k) + Bljuj;t”) V 1 v Jo* 
i’“) J(S) S G (j) = 0 

where vjk) are solutions of (2.3) with a transposed matrix. 

Solution of (2.4) gives 

U. Ck) = Ujil)f(k) (x) + U$?f,(k) (z) 
Jl 

Function fl(k) (.x) is found from the condition 

G (fl’“‘) + [C ..,,@)f(k) + quji? f(k))‘] v.ck) = o 
t) 31’ v 

of compatibility of a system defining u,~. This gives jr (k) = cjtk) + ft*(k), where c is an 

arbitrary constant which can be assumed zero. 

Subsequent approximations u,~, u,~, . . . are found in an analogous manner. Functions 

j(k)(r) and jr.(k)(~) are determined with accuracy of up to an arbitrary constant multiplier 

ck which is common to all these functions and which can be found from the boundary con- 

ditions. 

General solution of (2.2) cart be written as 

uj=Ckuj(k)=Ckf(k) (Z) [U$ (1 + E (fit’/f’“)) +...)+e&+...] eXp s hck’dX (2.5) 
For (1.3), we have 

0) = - h / u 9 h(‘)= -h/(Ufa) (a = V/xP/K) 

u~~~=(u*a){[a(afU)]‘+a(afU)f(‘~‘/f(’~+U’(Ufa)f (2-a 
faUy’lyfaB%/R - Ba (a, + dq,)} f aRz$;; 

f(l) (x) = $$ exp [ K1 dx (k = 1, 2, 3, i = 2, 3) 

0 

where functions under the integral sign have the form 
~ 

1 

= _(x-l)a’s, 

a2fJ -7 

K. _ f (III m'(x- 1)u 
1--2a”(U+a) a (a% + a,) - 

SLP (% + 1) U’ y’ (XV f a) - 
2m (I/ -fr: u) i (2X - l) 5RZ 2nR (U * II) 2(Uzta) + 2v/ (I/ + n) 

Magnitudes equal to - I/(h &J(k) (k = 1; 2, 3) represent the velocities of propagation of 

small perturbations. In the case of a supersonic flow, all three perturbation waves move 

downstream, while in the case of a subsonic flow, two waves move downstream and the re- 

maining one moves upstream with velocity of (U - (I). Zero approximations uto: correspond 

to the analogous gasdynamic solution. 

Expressions for f(*)(x) yield wave amplification factors. For a supersonic flow they are 

--- (i = 3, 3j 

0 
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For a subsonic flow the above form is retained for the waves propagated with velocities 

II and U + a, while for the wave whose velocity is (U - a), it becomes 

Subscripts 0 and L refer to parameters in the cross-sections x = 0 and Y = L respec- 

tively. 

3. In order to determine the coefficients cl, c2 and cg, let us write the boundary con- 
ditions for three possible modes of flow : supersonic, subsonic and mixed, the latter ex- 

hibiting a sonic transition within the shock wave. We shall assume that the waves arriving 

at the boundaries of a magnetohydrodynamic channel, will be of zero amplitude. This will 

be tNe, e.g. for an open working cycle of the channel. 
Amplitudes of waves arriving at the boundaries (r = 0, x = I,) may be different from zero 

if the waves spreading from the magnetohydrodyn~ic channel undergo a reflection within 
a gasdynamic part of the flow. These waves can be taken into account when formulating 
the boundary conditions. Such a reflection however will not take place if walls of the chart- 

1.4 smoothly diverge on approach to a large size receiver and towards an exit into the atmo- 

sphere. 
Let us denote the solution by u,- when x < 0 and by u,+ when * > t. Assuming that the 

solution of (1.3) is continuous at z = 0 and *: =f L i.e. that a magnetohydrodynamic flow is 
continuously transformed into a gasdynamic flow, we obtain three typesof boundary con- 
ditions. 

Sn p e r s o n i c f L 0 w. in this c88e, all three em811 perturbation wave8 move downstream 
Assumption that external perturbations 8re absent implies that u, = 0 when x = 0, hence ck 
is given by 

CkUj’k) = 0 0'7 k = 1, 2, 3) 

It is easy to show that the determinant Irrj@)l of this system is, for large A, different 

from zero, hence err has only 8 trivial solution. This means that eigenfunctions are not 

formed and that any initial perturbation will be removed beyond the bound&c8 of the chart- 

nel in a finite period of time. 
Subsonic flow. Here one wave moves into the region x < 0 hence u,*= cam,‘, 

while at x = L, we have two w8ves moving into the region x > L which give8 

uj+ = ct;uj*(l) Jr ca+rJj+@) 

Condition of continuity of gasdynrunic parameters on the boundaries of 8 channel yields 
c* z+(X) = C*-Uj-(‘) (5 = 0)~ CkUjck) = Cl+Uj+(‘) + Cp+Uj+(*) (3 = L) 

(I, k = 1,2,3) (3.1) 
A necessary condition for the eigenfnnction to exist is, that the D (A)-determinant of 

the system (3.X) which define8 c Xt C,, cf, ct? ca+ and cJ- is equal to zero, 

(3.2) 

The above equation is need to determine the n8tnr81 freqnencisa h. 

fn the deriv8tion of (3.2) we have 888Umsd that the condition (1.1) is falfiiled, th8t the 
derivative y’lr) ha8 u discontinuity and that y ‘= 0 88 L + - 0 and 1: -+ + Z,,. If y’i8 contin- 
uou8, then Exprea8ions (2.6) for ul. contpin no‘tenns with Y’ 

It 8hoafd be noted that when u, is taken in zero approximation only, th8n D (A) 4 0 kd 
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conlJeqnently all Ck = 0. This followa from the fact that at large A, coefficients of reflec- 
tion of wavea from the enda of the channel are of order 8’. Reflections are caused by dis- 
continuities in 0 , B, y, y’and U’occurring on the boundaries of the channel and inten- 
sities of the cause and effect are directly proportional to each other. 

First two terms of (3.2) contain f(t)(L) and f(2)&), which represent exponential fnnc- 
tions of (2.6). Therefore, if 

L 

p&>~K& 

0 0 

then the second term is small compared with the first and can be neglected. If, on the 
other hand 

L (K&>~Kl 
0 0 

then we can neglect the first term. Thus, (3.2) can be split into two equations, each of 
them valid under the conditions given above, and each reducing to 

(I = 1, 2)1 (3.3) 

2ao%L~f(s) (L) 
L 

El = (Q ). (a+l(;) - U$ )L f(l) (L) ’ “= U(a-U) s adx >o 
0 

(3.41 

Ea = 
4a02aL f 2 C3) (L) 

(aRu$’ + us;? 10 &I. 0) - aRu21’f’ )L f(S) (L) ’ q2=[ 
8 

*>o 

Onset of instability is aaso,ciated with the presence of such natural frequencies X , for 
which Re x = h, > 0. For (3.3) this requirement for roots 1 hl > N‘ is fulfilled, when 

Indeed, roots of (3.3) represent, in the complex plane A, a aet of isolated pointa distri- 
buted alona a continuous cnrve 

Im h = hi (A,) = * (A exp (: &) - h,e)ll 

When (3.5) holds, then the curve X, (&) intersects the imaginary axis in the X-plane, 
outside a circle of radius N, where expansion into a series in l/h is valid, and we can 
always find a root of (3.3) with a positive real part near the point of intersection, since at 
small X, we have & = (‘/an 

From (3.4) it follows that 8 
2mn) / 1, where m is an integer. 

t and c2 are small, if corresponding Expressions 
I. L 

exp 
s 

(Kl - 6) dx, exp 
s 

(KS - KS) dx 

are large. This is possible’when K, - K3 > 0 and K: - K,>O. 
If we assume that electric conductivity ia a power function of temperature u= Ta, then 

reduction of (3.4) to dimensionless form yielda 

Fig. 1 shows the curves for various values of parameters n and Y 61= 0.5, Y = - 1, 0, 1, 
x = ‘/3), dividing the (a, &plane into two regions fl, and CI . In f& condition Kt > K, 

holds, while in a,, the condition K, > K,. If parametem of the $10~ are in the region fit 
over the whole or on the greater part of the segment 06 x < L, then Eq. (3.3) with 1 = 1 
holds, while if the parameters are in a,, then (3.3) with 1 = 2 holds. This means that the 
growth or decay of perturbations in a magnetohydrodynamic flow in n t is governed by the 
reflection of small perturbation waves propagating with velocities II and II - a, while in 
Q 

1 
the behavior of perturbations is controlled by reflection of the waves propagating with 

ve ocities II + o and U - o. In near vicinity of the line of discontinuity reflection of all 
three waves takes place and Eq. (3.21 must then be used. 
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Fig. 1 

Region of instability becomes larger with increasing n when 
y ” 0 ( Y = 0) and this, basicall , leads to a mode in which 
energy is supplied to the gas ( (J > Ml. (Fig. 2a gives the curves 
for parameter values Y = 0, n = 0, 5, 10, x = 6//s ). In the diver- 
ging channels (y’7 0) this corresponds to positive values of Y 
and region of instability becomes larger, while in the converging 
channels (y’< 0, Y < 0) region of instabilit diminishes and 
shifts to the right towards larger values of i (see Fig 2b). 

(Fig. 2b gives the curves defining a region Q of possible 
instability for the following parameter values Y = 1, 0, - 1, n = 5, x = Ve). 

Points at which these curves intersect the line M = 1, are singnlar points of a station- 
ary system of equations. 

Figs. 2a and b give curves for various values of parameters 
n and Y. These cnrves separate region Q of possible instability 

of the flow where tt is small (K 
where [t is large (Kt - 

- K3 7 01, from the region 
K, < Ol.ff 

P 

arameters of the flow are 
within the Q-regions at all r E[O, L , then soch flow may be an- 
stable. It will however be stable if these parameters fall outside 
the Q-regions. 

a 

Fig. 2a, b 

b 

We have found that Eq. (3.3) with 1= 2 does not produce other regions of instability, 
since the condition sign (K, - K3) = sign (Kt - Kg) holds in the regions & (see Fig. 1). 

Instability which we have obtarned here is, in the physical sense, analogous to the 
global instability discussed in [6]. 

Flow with a shock wave. We have a steady flow in a channel and we assume 
that a shock wave appears at the cross-section z = 0 irrespective of whether the channel is, 
at x < 0, gasdynamic or magnetohydrodynamic. In an unsteady flow, position of the shock 
wave is given by Z = &$’ (6 is an arbitrary constant), since by previous assumption 
the factor eat defines the dependence of our solution on time, and the displacement velo- 
city of the shock wave is given by d.v/dt = X tie”’ where X6 is small, while x is, as ‘be- 
fore, large. 

Linearising the conditions for gasdynamic parameters on the shock wave (shock wave is 
gasdynamic, since the conductivity is assumed finite) and substituting solutions (2.5) for 
s = 0 into the resulting equations we obtain, neglecting terms of order l/A, 

Ck (UrJU&k) + I?&(“)) - 6h (Ro - Ro-) = 0 

c* (U&,(k) + 2U&UZ(~) + Up) = 0 

x 
ck 

_ - ?!L q(k) + Uouz(W + 5; 
x-1 RO= 

us(k) - t?h (i7, - U,,-) = 0 
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Ifem the l ttpsrmcrfpt’ and the subscript0 denote the parameters in front of the shock 
W~TO, while the l ttbmcript e alone, the parameters behind the shock wave. When x = L, 
second condition of (3.1) holda 

+U+k) = ct-ui-O) + cz-uj--@) ’ (i, k = 1, 2, 3) 

ge8uhfng nyntem of six homogeneous eqoations with six nnxnowns cl, c2, C3, C t-, c2- 
nnd fl hae a nontrfvial l olution, when the determinant 

D(A) = 

Here X1 = (3 -X)/2(X - 1). In the coarse of derivation of (3.6) we have atilised 
known relations on the #hock wave. 

Using similar arguments we find, that the onset of instability in preoence of a shock 
wave is subject to the condition 

1611 < 1 lN (I = 1, 2) 

which differs from (3.5) in values of 6, and in the fact that the denominator contains N and 
not N 2. 

From the physical point of view it means, that the coefficient of reflection from the 
ahock wave is of the order of unity, while that of reflection from the end x = L is, as be- 
fore, of the order 8. Therefore onset of instability is more possible in presence of a shock 
wave. Expressions for [, have the form 

Cl = 

UL2M0 (MO + 1) (MO + Xl) f@) (L) 

(aRu2i;’ - u31(!))L (MO - 1) (XMo2 + 1) f(l) (L) 
I.7 I\ 
\a.11 

2ala (MO + 1)” (MO --I- x1) fc3) (L) 

- u21(2’)r. (MO - I)” (MO - x,) p (L) 
from which it follows that re.giGi of poisible instability are the same as in the case of 
subsonic flow, since their denominators contain the same exponential terms. 

From (3.7) it follows that strong shock waves produce strong reflections which enhance 
the instability, while in the case of weak shock waves Cu, + 1) the reflection may become so 
weak, that a reflection from the cross-section where magnitudes y ‘, B, cp,and U’exhibit a 
discontinuity, may have a decisive influence, i.e. a case discussed previously. 

4. Let as consider the behavior of small perturbations near the points of continuous soa- 
ic transition in a steady flow. 

If any one of characteristic velocities becomes zero at some point .v* of the considered 
segment of x-axis, then the theorem which states that the asymptotic behavior in time of 
the solution of the linearised system is governed by the factor e M, is no longer valid. 
Therefore we shall investigate the distribution of perturbations over a finite duration of 
time and space. We shall limit ourselves to such perturbations, which can be represented by 
a Fourier integral in large values of A only. This is true for wave packets and for individual 
short imp&es of any form, when the contribution of small values of A to the Fourier inte- 
gral can be neglected. 

Then a solution for an unsteady perturbation equation can be written in zero approxima- 
tion, as 

where F(k) (A) is a Fourier representation of a perturbation propagating with velocity 
c(k) b). 
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Let us now consider a term, corresponding to some cck) in (4.1). We have, along the 
characteristic dr/dt = ctk) (~1, 

J”t- A” dx I ~ = const 
dk) lx) 

From this it follows, that a perturbation ddsiribed by this term propagates along the 
characteristics belonging to a corresponding family, and growth of perturbations is de- 
fined by f(k) (xl. 

Characteristic perturbation wavelength varies as c(k) (x). Short impulses expand with- 
out changing their form (amplitude and scale change along the r-axis). 

Let us assume that, at some point x = 9, a continuous transition occurs, from a supers 
sonic, to a subsonic steady flow. Then the perturbations whose velocity is equal to U - a, 
approach the point L* from both aides, but achieve it only when t + m. At the same time, 
as we said before, amplitude of the wave will either tend to infinity or remain bounded to- 
gether with f(3)(~). 

In the first case when the magnitude of perturbation increases without bounds, we shall 
assume the flow to be unstable. 

If, on the other hand, a transition from subsonic to supersonic flow occurs at x = x *, 
then perturbations corresponding to U,(S) originate in the vicinity of the transition point. 
The ratiof(3)(.xt)/flJ)(x) gi ves the amplification of these perturbations over the time r, 
and x denotes a point at which this perturbation was situated at t = 0, which arrived at the 
point x1 at the instant t. 

With fixedxt andt+w, we haver-ra*. Thus, if initial perturbations are bounded 
everywhere, then perturbations will, at all points, grow without bounds if f(3)fxf + 0 as 
x+x*, and decay if f(3)(%) -+ ~0 as x + x l . In the first case we have an unstable flow. 

We shall show that if sonic transition takes place in a saddle point for the steady state 
equations then f(3)(x) + bo as x + x *, while if the transition occurs at the nodal point for 
the steady state equations, then (3)(x) + 0 as % + x*. 

The following relations hold 31 at the singular point I: I: z *, U = u f 

(4.2) 

GB~%(%_t1) * -- 7‘1 .- aR 2 ( +~a = m (Y. rp, B, Y’, Y’, rp’, B’, x, ~9 

Substituting (4.2) into the expression for f(3) and under the integral sign in (2.6), we 
obtain 

1 
2(z-z*)M’ [ 

--T1Pr1(l-4$)%j (4.3) 

Here similarly to [3] we assume, that o- 
sion (4.3) retains its form). 

const (we note that when c = o(p, p 1, Exprss- 

In [3] we have also shown that: (1) When yx > 0 and I - 4 y2 /yt2> 0. then the singar 
lar point is a node and also if y t> 0, then M’< 0 and we have a transition from supersonic 
to subsonic fIow, while if yt < 0, then M’> 0 and we have a transition in the opposite 
direction; (2) When y2 < 0, singular point is a saddle point and from it the flow passes 
from subsonic to supersonic in one direction &‘> O), while in the other direction where 
M’< 0, the flow passes from supersonic to subsonic. 

In the case of a nodal point, the sign of the expression for f’J) under the integral sign is 
defined by the sign of f-y,M’) ; when yt 
grand is positive and f(3) + 0 as z + n . 

> 0 and M’< 0 or when yt < 0, M’> 0, the inte- 
In the case of a saddle point, the sign of the inte- 

grand is always negative and f(3) -+ OQ as x + x l . 
In conclusion we shall note that the present investigation was concerned with linearfeed 

equations. If nonlinear terms were taken into account in (1.31, then tha behavior of pertarc 
bation amplitudes near a saddle point might differ from that obtained for the linear approxi- 
mation. 

The author thanks A.G. Kulikovskii for useful criticism and interest in this work. 
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