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Stability of onedimensional magnetohydrodynamic flows in channels of variable cross-
section with particular attention given to the growth of small perturbation waves, was in-
vestigated in [1 and 2. In 1] the wave amplification factor was determined under the
assumption of homogeneity of the flow (its parameters independent of x), while in [2] amp-
lification factors for a nonhomogeneous flow were found with the help of the magnetic field
induction equation.

Investigation of stability should include a statement of the boundary value problem for
linearised nonsteady equations and a determination of natural frequencies A.

Below we consider a problem of stability of a quasi-onedimensional magnetohydrodyna-
mic flow at small magnetic Reynold’s numbers with respect to short wave oacillations
(unlike [2], we assume that electric and magnetic fields are any specified functions of %)
Parameters of the flow which is investigated for atability, are functions of the longitudinal
coordinate x, while parameters of the perturbed state are functions of x and ¢. Boundary
conditions at the front and back end of the magnetohydrodynamic channel are obtained from
the requirement of continuous transition of the mode of flow into a pure gasdynamic flow
perturbed only by the waves expanding from the boundaries of the magnetohydrodynamic
channel. (We assume that no perturbations arrive at these boundaries from the outside).
Under these assumptions, we investigate three different modes of flow : supersonic, subson-~
ic and a flow in which sonic transition takes place within the shock wave.

Stability of steady flows with a continuous transition through the sonic barrier is also
investigated in the linear approximation. As we know, continuous sonic transition occurs
at the singular points of the system of equations describing a steady flow [3].

Below we show that continuous transition from supersonic to subsonic flow is stable,
if it occurs at a node, and unstable if it occurs at a saddle point. The opposite is true in
the case of a transition from subsonic to supersonic flow.

1. Let us consider a flow of a nonviscous fluid without heat conduction, in a plane
channel of variable cross-section y{x), in the presence of an extemal magnetic field B= (0,
0 — B). Electrical conductivity of this fluid is 0 = o(p, p), upper and lower walls of the
channel are conducting and exhibit a potential difference of 2% within 0 2§ L, while
outside this segment they are nonconducting. Magnetic field intensity B and electric poten-
tial @ are, on the segment 0 x § L, any specified functions of x, while outside this seg-
ment they are identically equal to zero
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Direction of velocity vector of the flow coincides with the positive direction of the
x-axis.

Continuity, motion and energy equations of an unsteady onedimensional flow at small
Reynold’s numbers, have the form

8 8
Y5 + 35 (uy) = 0
paz"'p w5 == g5 + B (§ —ub) .

8 ¢ 2
Y5 a, -+ uy L+ up5; (wy) = (x—1)oy (-y- — uB)
where u is velocity, p is the denuity, p is the pressure of fluid and % is the ratio of
specific heats. Equation of state for a perfect gas was utilised in deriving the above equa~
tions.
In order to investigate the stability of the flow defined by steady state equations cor-
responding to {1.2), we shall consider a lineariséd system

d UyYy 9 Ryy 3
—5'§-+‘-ﬂp+tf—f’-+u)—u+35.§:0
(UU’ — Basy)p + R 2% 4 (RU’ + 6B u+ RU 2% _ Bus,p + 22

—(x—i)achp-{—(P’—{—xP +2(x—1)dBa)u+xP + +

_.!...p(l‘_(z_y)._(“__.i)azop)_*_[f.g;:o (1.3)

where R (x), U(x) and P (x) are the density, velocity and pressure respectively of the
steady flow; p(x, ¢), u(x, ¢) and p (x, ¢) are perturbations of the corresponding magnitudes
and are assumed small; o, and g 5 are the corresponding partial derivatives of electrical
conductivity o and @ = @/y — UB. Derivatives with respect to x are denoted by a prime.
Since the system (1.2) willnotbe used again, we shall retain its notation for perturbations.

2. We shall seek the solation of (1.3) in the form
p (z, 1) = u, (z)eM, u(z, &)= uy (2}, p(z, t)= uz(z)e* (2.1
since the growth of functions p(x, t),..., when ¢t -+ oo, is governed [4] by the extreme right-
hand side eigenvalue A.

Putting (2.1) into (1.3) we obtain a system of ordinary linear differential equations.
Solution of this system can be found by expanding it into an asymptotic series in'€ = 1/A,
provided that | A\| > N where N > 0 is sufficiently large [5].

Let us write a general expression for this system

Byui + (ng + Cyyuj =0 (4, 1=14,2, 3 {2.2)
where repeated index denotes summation. Writing its solution in the form of a series
uj= (ujo 4 euj + etujs + ...) exp { hdz
and inserting it into (2.2), we obtain a sequence of systems of linear algebraic equations
defining Ujgs Uyy €tC
(Byjeh 4 Agj) uj=0 (2.3)
(Bﬁ&h + Aﬁ)u;1= v (C;,-u,-o + Bﬁu’jo) (2-4)

| Bygeh + Ag31= 0
is necessary for a nontrivial solution of (2.3) to exist, and it yields the values of {he)(*)
(k =1, 2, 3) at which the determinant of {2,3) becomes zero. A solution u 0< )= um.("‘)
f &) (x) corresponds to each value of (h2)(%), and f(¥)(x) is an arbitrary function which can
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be found from the condition of compatibility of (2.4), with the accuracy of up to the con~
stant multiplier

2B 01" 1 u ) 4 B v = G () =0
where v{*) are soluuons of (2.3) with a transposed matrix.

Solution of (2.4) gives

up® = w01 (@) +uf21® (@)
Function f,(K)(x) is found from the condition
G (h™) + [Cu 1 + By (uifl) 1®)]0,® =0
of compatibility of a system defuung u;,. This gives [l(k) = cft) f1+%, where ¢ is an
arbitrary constant which can be assumed zero.

Subsequent approximations u;,, u;3,... are found in an analogous manner. Functions
f®) (2) and f,,*)x) are determined with accuracy of up to an arbitrary constant multiplier
¢ which is common to all these functions and which can be found from the boundary con-
ditions.

General solution of (2,2) can be written as

wj=cet®=cxf® () [uf) (1 + e (D / ) +...)Feugii+...] exp § & dz (2.9)

For (1.3), we have

W=—A/U, W=—\[{(Uxa) (a=VxP]R)
afl=1, uf =ul) =0, uf =ta/R, uf =0
uf) =0, ul =U (RyfO)*(Uyfvy, uf),=UUU'— Bas,)
wd, = (U & a) (RyfO)* [(U & a) yfO)’

u) = (U a){la@+U) +a(@£U)f® [j0 4 U (Uta)yx @O
+alUy' |yt aB%* /R — Ba (o, + a%s,)} + aRul®)

31e

x

R ¢ 3
(:L expSKldx (k=1,2,3,i=2,3)
i}

0 (2) =

0 (@) = (SO L@

/2 B
FErR@) exp\Kids
0

where functions under the integral sign have the form
) (% — 1) 4%, L daBi(—1)a
K= ——57, Ai:vZa’-’(Uia) a(a®sp + ) —

a?U
582 (2 —1)s5Bx (= +1) U’ y (U 4 a)
T RTES TRRTU TG U La T T La)

Magnitudes equal to —1/(h€)0) (k =1, 2, 3) represent the velocnles of propagation of
small perturbations. In the case of a supersonic flow, all three perturbation waves move
downstream, while in the case of a subsonic flow, two waves move downstream and the re-
maining one moves upstream with velocity of (U — a). Zero approximations u;, correspond
to the analogous gasdynamic solution.

Expressions for f(k)(x) yield wave amplification factors. For a supersonic flow they are

W) R@ (e 19 (aeR@yt e o
;—W = —g, XP \ Kydr, ) == k[{wa (z)) exp 5 Kide (=23
0 0
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For a subsonic flow the above form is retained for the waves propagated with velocities
U and U + a, while for the wave whose velocity is (U — a), it becomes

X
1
[9 (=) (“:,“R(:")> : g -
i® (L) T \R, 4 (z) e}‘p}d Ryl
Subscripts 0 and L refer to parameters in the cross-sections x = 0 and x = L respec-
tively.

3. In order to determine the coefficients ¢y, c, and c;, let us write the boundary con-
ditions for three possible modes of flow : supersonic, subsonic and mixed, the latter ex-
hibiting a sonic transition within the shock wave. We shall assume that the waves arriving
at the boundaries of a magnetohydrodynamic channel, will be of zero amplitude. This will
be true, e.g. for an open working cycle of the channel.

Amplitudes of waves arriving at the boundaries (x = 0, x = L) may be different from zero
if the waves spreading from the magnetohydrodynamic channel undergo a reflection within
a gasdynamic part of the flow. These waves can be taken into account when formulating
the boundary conditions. Such a reflection however will not take place if walls of the chan~
nel smoothly diverge on approach to a large size receiver and towards an exit into the atmo~
sphere.

Let us denote the solution by u;~ when x < 0 and by u;* when £ > L. Assuming that the
solution of (1.3) is continuous at x = 0 and x = L i.e. that a magnetohydrodynamic flow is
continuously transformed into a gasdynamic flow, we obtain three types of boundary con-
ditions.

Supersonic flow. In this case, all three small perturbation waves move downstream
Assumption that external perturbations are absent implies that u; = 0 when x = 0, hence ¢
is given by

cxu® =0 (G, k=1,2,3)

It is easy to show that the determinant |u, (")| of this system is, for large A, different
from zero, hence ¢, has only a trivial solution. This means that eigenfunctions are not
formed and that any initial perturbation will be removed beyond the boundaries of the chan
nel in a finite period of time.

Subsonic flow. Here one wave moves into the region x < 0 hence u,”= eyu,” (),
while at x = L, we have two waves moving into the region x > L which gives

uit = a7t - eytyt
Condition of continuity of gasdynamic parameters on the boundaries of a channel yields
e ui® = cyu® (x=0), cu® = ¢;'u;*® 4 cg*'u*® (z = L)

(f’k= 1: 21 3) (3-1)
A necessary condition for the eigenfunction to exist is, that the D (A)-determinant of
the system (3.1) which defines ¢ ,, C,, ¢3, eh ¢,* and ¢ ;- is equal to zero,

L
D (h) = — 26° (uy®), (@Ruyf® — u,®), 1 (Lyexp (—1{ %) +
0

L
+ 6 (@Ru + u ), @Ru,® — u,®), 10 Dyexp (— 3 722) +
[4]

a

L

4alar?f® (L) ex (-—KS s )—_.-O

The above equation is used to determine the natural frequencies A. .

In the derivation of (3.2) we have assumed that the condition {1.1) is fulfilled, that the
derivative y {x) has a discontinuity and that y "= 0 as x + — 0 and x + + L. If y’ is contin-
uous, then Expressions (2.6) for 4, contain no terms with v* _

It should be noted that when 4, is taken in zero approximation only, then D () # 0 and
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consequently all ¢, = 0. This follows from the fact that at large A, coefficients of reflec-
tion of waves from the ends of the channel are of order €. Reflections are caused by dis-
continuities in ¢, B, y, y’ and U’ occurring on the boundaries of the channel and inten-
sities of the cause and effect are directly proportional to each other.

First two terms of (3.2) contain f(1)(L) and f(2)(L), which represent exponential fanc-
tions of (2.6). Therefore, if

L L
\Kide > Kydz
0 0

then the second term is small compared with the first and can be neglected. If, on the
other hand

L L
SK,dx>SK1
0 0

then we can neglect the first term. Thus, (3.2) can be split into two equations, each of
them valid under the conditions given above, and each reducing to
1 /A2 =& exp iy (I=1,2) (3.3)

2a5%a, 2 (L) 6 ade

g = ) =\ O
' (u5f )o (aRug{) —u (V) f¥ (L) " §U (a—U) >

(3.4)
E 4ao2aL2f(3) (L) 0 S 2adx > 0
g = , , = 2adz_
(aRuy® + uy®), (up® — aRu, @), fD (L) Yoo

Onset of instability is associated with the presence of such ngtural frequencies A, for
which Re A = A, > 0. For (3.3) this requirement for roots |A] > N is fulfilled, when

5] <1V (=12 (3.5)
Indeed, roots of (3.3) represent, in the complex plane A, a set of isolated points distri-
buted along a continuous curve

1 . i
ImA=A (A)=+ (E"I exp (= 1ik,) — 1,3

When (3.5) holds, then the curve A; (A,) intersects the imaginary axis in the A-plane,
outside a circle of radius N, where expansion into a series in 1/A is valid, and we can
always find a root of (3.3) with a positive real part near the point of intersection, since at
small A, we have ; = (M/pnt ? 2mmn) /[ m, where m is an integer.

From (3.4) it follows that £; and £, are small, if corresponding Expressions

L L

exp S (K1 — Ks) dz, exp S (Ks — Ky) dz

0 0
are large. This is possible when K; ~K3> O and K, - K3> 0.
If we assume that electric conductivity is a power function of temperature o = T#, then
reduction of (3.4) to dimensionless form yields

(1o U y'RU sB2L
&:E((D,M,Y,n,A,n), :yTEy =Tv- Y=y6B2y A=UR

Fig. 1 shows the curves for various values of parameters n and Y (s = 0.5, Y = -1, 0, 1,
% = 5/3) dividing the (0, M)-plane into two regions Ql and 0,. In {}; condition K; > K,
holds, while in Qz the condition K, > K. If parameters of the %low are in the region (),
over the whole or on the greater part of the segment 0K x L, then Eq. (3.3) with I =1
holds, while if the parameters are in (},, then (3.3) with } = 2 holds. This means that the
growth or decay of perturbations in a magnetohydrodynamic flow in {} ; is governed by the
reflection of small perturbation waves propagating with velocities U and U —~ a, while in
{2 , the behavior of perturbations is controlled by reflection of the waves propagating with
vejocilies U+ a and U - a. In pear vicinity of the line of discontinuity reflection of all
three waves takes place and Eq. (3.2) must then be used.
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Figs. 2a and b give curves for various values of parameters

=0
' (\":"\l n and Y. These curves separate region Q) of possible instability
Y=+l n=6 of the flow where fl is small (Ky - K3 > 0), from the region

@V where £ is large (K; = K4 < 0).1If arameters of the flow are

within the Q-regions at all x &[0, L], then such flow may be un-
stable. It will however be stable if these parameters fall outside
the Q-regions.
Region of instability becomes larger with increasing n when
'\Y“/ 5 y’= 0(Y = 0) and this, basical(lg, leads to a mode in which
=hAs energy is supplied to the gas (D > M). (Fig. 2a gives the curves
for parameter values Y = 0, n = 0, 5, 10, % = 5/ ). In the diver-
ging channels (y’> 0) this corresponds to positive values of Y
P| and region of instability becomes larger, while in the converging
] 2 4 channels (y“< 0, Y <0) region of instability diminishes and
Fig. 1 shifts to the right towards larger values of O (see Fig 25).
(Fig. 2b gives the curves defining a region ( of possible
instability for the following parameter values ¥ = 1,0, — 1, n = 5, % = 5/5),
Points at which these curves intersect the line M = 1, are singular points of a station-
ary system of equations.
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Fig. 2a, b

We have found that Eq. (3.3) with ! = 2 does not produce other regions of instability,
since the condition aign (K, ~ K4) = sign (K, ~ K3) holds in the regions (), (see Fig. 1).

Instability which we have obtained here is, in the physical sense, analogous to the
global instability discussed in [6].

Flow with a shock wave, We have a steady flow in a channel and we assume
that a shock wave appears at the cross-section x = 0 irrespective of whether the channel is,
at x < 0, gasdynamic or magnetohydrodynamic. In an unsteady flow, position of the shock
wave is given by £ = @¢M (9 is an arbitrary constant), since by previous assumption
the factor ¢» defines the dependence of our solution on time, and the displacement velo-
city of the shock wave is given by dx/dt = A O¢*' where A®} is small, while A is, as be-
fore, large.

Linearising the conditions for gasdynamic parameters on the shock wave (shock wave is
gasdynamic, since the conductivity is assumed finite) and substituting solutions (2.5) for
% = 0 into the resulting equations we obtain, neglecting terms of order 1/A,

Cr (Uou]_(k) + Rollg(k)) — A (Ro — Ro_) =0

Cr (Uozul(k) + 2U0R‘—:u2(k) + us(k)) =0

e (— 27 R ® + Uota® + o us®) — O (Uo— Uy) = 0

x—1 Red w—1
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Here the superscript™ and the subscript , denote the parameters in front of the shock
wave, while the subscript , alone, the parameters behind the shock wave. When x = L,
second condition of (3.1) holds

cxus® = ey ui W 4 eqmu ) C (1, k=1, 2, 3)

Resulting system of six homogeneous equations with six unknowns c,, ¢y €3, €, ¢,°

and O has & nontrivial solution, when the determinant

L
D(\) = —2(M, +1)* (Mo + 1) a2 f® (L) exp (— *S Ud_:ia ) +

dx
U+a ) +(.':‘.6)

+ e (aRu,® —u,®), (Mo — 1)* (Mo — xy) f® (L) exp (-— A

31e

S

1 dr
o+ 26 (@Ru, — uyl0), (M52 —1) (Mo -+ 57 ) 109 (D) exp (— 3 77) = 0
0
Here %y = (3 — %)/ 2(% ~ 1), In the course of derivation of (3.6) we have utilised
known relations on the shock wave.
Using similar arguments we find, that the onset of instability in presence of a shock
wave is subject to the condition

|G| <<1/N (=1, 2)
whichzdifleu from (3.5) in values of {; and in the fact that the denominator contains N and
not N2,

From the physical point of view it means, that the coefficient of reflection from the
shock wave is of the order of unity, while that of reflection from the end x = L is, as be-
fore, of the order &. Therefore onset of instability is more possible in presence of a shock
wave. Expressions for /; have the form

: ap?Mo (Mo +1) (Mo + x1) ¥ (L)
1 ==

(6RuyD —uy D), (Mo —1) (xM? + 1) /D (L)

3 (3.7)
: 2a;% (Mo - 1)* (Mo + %1) f® (L)
2 =
(aRuy® — u 2y (Mo — 1) (Mo —w1) J® (L)
from which it follows that regions of possible instability are the same as in the case of
subsonic flow, since their denominators contain the same exponential terms.

From (3.7) it follows that strong shock waves produce strong reflections which enhance
the instability, while in the case of weak shock waves (M, -+ 1) the reflection may become so
weak, that a reflection from the cross-section where magnitudes y’, B, @,and U’ exhibit a
discontinuity, may have a decisive influence, i.e. a case discussed previously.

—u

4. Let us consider the behavior of small perturbations near the points of continuous son-
ic transition in a steady flow.

If any one of characteristic velocities becomes zero at some point x* of the considered
segment of x-axis, then the theorem which states that the asymptotic behavior in time of
the solution of the linearised system is governed by the factor ¢*, is no longer valid.
Therefore we shall investigate the distribution of perturbations over a finite duration of
time and space. We shall limit ourselves to such perturbations, which can be represented by
a Fourier integral in large values of A only. This is true for wave packets and for individual
short impulses of any form, when the contribution of small values of A to the Fourier inte-
gral can be neglected.

Then a solution for an unsteady pertutbation equation can be written in zero approxima-
tion, as

2 » dr q
= SV L0 () { g Y G ) (3 —
w= 2w @ | F0 ) oxp (3e W)t M@ == W

where F(k)(X) is a Fourier representation of a perturbation propagating with velocity

e () (x).
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Let us now consider a term, corresponding to some ¢(%) in (4.1). We have, along the
characteristic dx / dt = ¢ (x),

At kn dr nst
— A\ ——— = cons
3 c®)

From this it follows, that a perturbation described by this term propagates along the
characteristics belonging to a corresponding family, and growth of perturbations is de-
fined by f U {(x).

Characteristic perturbation wavelength varies as ¢(%)(x). Short impulses expand with-
out changing their form {amplitude and scale change along the x-axis).

Let us assume that, at some point x = x*, a continuous transition occurs, from a super
sonie, to a subsonic steady flow. Then the perturbations whose velocity is equal to U - g,
approach the point x* from both sides, but achieve it only when ¢ + oo, At the same time,
as we said before, amplitude of the wave will either tend to infinity or remain bounded to~
gether with f(3)(x).

In the first case when the magnitude of perturbation increases without bounds, we shall
assume the flow to be unstable.

If, on the other hand, a trangition from subsonic to supersonic flow occurs at x = x *,
then pertuybations conesponding to u,(3) originate in the vicinity of the transition point.
The ratio f(3)(x,) /f(3)(x) gives the amplification of these perturbations over the time ¢,
and x denotes a point at which this perturbation was situated at ¢ = 0, which arrived at the
point x, at the instant .

With fixed x, and ¢ -+ 0o, we have x » x*. Thaus, if initial perturbations are bounded
everywhere, then perturbations will, at all points, grow without bounds if f{3{x)» 0 as
x - x*, and decay if f{3)(x) » o0 a8 x » x*, In the first case we have an unstable flow.

We shall show that if sonic transition takes place in a saddle point for the steady state
equations then f(3)(x) 4 oo as x + x*, while if the transition occurs at the nodal point for
the steady state equations, then f(3)(x)-» 0 as x » x*.

The following relations hold [3] at the singular pointx =2*, U =a

’

y _sB? %~ 1 , 2UM’ | w—1cB? .
yar@—0(Sme—1),  r=TH iR oy
AP ¢ S ¢ e \'h
O=rpgpM=—"7+73 (“‘4713) (4.2)

sBix(x +1) % —1 o
Tl‘:‘:;—ﬁ 2 (i-‘ " (D) (1—m®)r T2=Tﬁ(y) P, B: yl: y'! ‘P', B': , Z‘)
Substituting {4.2) into the expression for f(3) and under the integral sign in (2.6), we
obtain

i Yol
se=zar [~ 0¥ n(1—455)"] (-9

Here similarly to [3] we assume, that ¢ — const (we note that when g = olp, p), Expres-
sion (4.3) retains its form).

In (3] we have also shown that: (1) When ¥, > 0 and 1 — 4y, /y,2> 0, then the singu-
lar point is a node and also if y ;> 0, then ¥ "< 0 and we have a transition from supersonic
to subsonic flow, while if y, <0, then #“> 0 and we have a transition in the opposite
direction; (2) When y, <0, singular point is a saddle point and from it the flow passes
from subsonic to supersonic in one direction (i “> 0}, while in the other direction where
M”< 0, the flow passes from supersonic to subsenic.

In the case of a nodal point, the sign of the expression for f(3) under the integral sign is
defined by the sign of (—y,M”); when 7> 0 and M“< 0 or when y; <0, M"> 0, the inte~
grand is positive and f(3)+ 0 as x + x*, In the case of a saddle point, the sign of the inte-
grand is always negative and f(3) + 0 as x » x*,

In conclusion we shall note that the present investigation was concerned with linearised
equations. If nonlinear terms were taken into account in (1.3), then the behavior of pertur
bati.on amplitudes near a saddle point might differ from that obtained for the linear approxi~
mation.

The author thanks A.G. Kulikovskii for useful criticism and interest in this work.
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